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Data Visualization-based Clustering
• We seek to understand data and cluster with mental algorithms. In other

words, we leave the loss function, the cost function, and the
optimization method to humans.

Index and Loss Function
• We reduce a data set to one index or several parameters.

• Cognition of Loss Function

Loss-based Clustering
• By upgrading one cluster to several clusters, another variable is added,

which is cluster assignments (fuzzy clustering and so on are provided).
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Data Visualization-based Clustering
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A few examples of clustering

Some 
Applications:

Facebook 
photos 

Clustering (~2 
Billion shared 

per day)

Facebook 
profiles 

Clustering

Vehicular ad 
hoc network 

clustering

Facebook 
users’ 

behavior
Clustering

Google trends 
Clustering 

(spatial 
clustering) 

Clustering: a group of similar things that are close together.

Some 
Applications:

Vehicle tracking 
via situation 
assessment 
(Trajectory 
Clustering) 

Geo-tagged 
image tagging 
using spectral 

clustering 

Clustering at 
hyperspectral 

image

Pedestrian 
tracking based 
on trajectory 

clustering
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Data Visualization 

LLE projection

 Examples with 3 Features (Attributes)

 S-Curve Dataset
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Data Visualization  and clustering

Chernoff face Face features

Clustering with 
Human
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Simple Example: Mnist

Data Visualization  and clustering

 Feature Extraction (Zonning),  Visualization of 16 extracted features 
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For: 9, and 4

 Star Coordinate

Example: 8 features

Data Visualization and clustering

𝑋 =  

i=0

d−1

𝑥𝑖 cos 𝜃𝑖 , 𝑌 =  

𝑖=0

d−1

𝑥𝑖 sin 𝜃𝑖 , 𝜃𝑖 =
2𝜋𝑖

𝑑

𝑃 = 𝑥1, 𝑥2, ⋯ , 𝑥8
𝑇

𝑋 = 𝑥1 cos 0 + 𝑥2 cos
𝜋

4
+ 𝑥3 cos

𝜋

2
+ ⋯ + 𝑥8 cos

2𝜋 × 7

8

𝑌 = 𝑥1sin 0 + 𝑥2 sin
𝜋

4
+ 𝑥3 sin

𝜋

2
+ ⋯ + 𝑥8 sin

2𝜋 × 7
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et.al, sadoghi, ‘Discernible visualization of high dimensional data using label information’ , Applied Soft Computing, Volume 27, 2015
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Star Coordinate: Iris (4 dim) 

 Using Semi-supervised Learning, Rotate axes with some labeled data.
Fisher Criteria, Classification Rate and so on are used for finding best
angle.

Data Visualization  and clustering

https://dl.acm.org/toc/apsc/2015/27/C
https://en.wikipedia.org/wiki/Semi-supervised_learning
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Index and Loss Function



[1] et al, Hadi Sadoghi Yazdi, ‘Prediction of liquefaction potential based on CPT up-sampling’, Computers & Geosciences, 2012

[2] et al, Hadi Sadoghi Yazdi, ‘Creating and measuring diversity in multiple classifier systems using support vector data description’, Applied Soft Computing, 2011
[3] ] et al, Hadi Sadoghi Yazdi, ‘Sparsity-aware support vector data description reinforced by expectation maximization’, Expert System, 2021
[4] et al, Hadi Sadoghi Yazdi, ‘ An extension to fuzzy support vector data description’, Pattern Analysis and application 2012

[5] et al, Hadi Sadoghi Yazdi, ‘ An Empirical Modeling of Companies Using Support Vector Data Description’, 2010

One Cluster of Data
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Data Description

Some Examples:
• Modelling with Lack of described data [1]
• Modelling of Huge Data via EM [3]
• Behavioral Description in classifier fusion[2]
• Inaccurate data description [4]
• For finance[5]
• …

center Boundary



magnification error

Cognition of Loss Function

 The first question is why do we think of using the loss function?

 Facts like death, poverty, pain, Short life, Fear, and so on, are painful losses.
 Losses in buying and selling, stock market, marriage, partnership, living.

 Is loss function a measure of the error magnitude?

Error correction
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+

Pseudo-Huber

LnCosh
𝑚𝑎𝑥 𝑒2 − 𝜖, 0

Different kinds of Loss Function

𝑚𝑎𝑥 𝑒 − 𝜖, 0
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[1] Verhoeckx, N., van den Elzen, H., Snijders, F., & van Gerwen, P. (1979). Digital echo cancellation for baseband data transmission. IEEE Transactions on Acoustics, Speech, and Signal Processing, 
27(6), 768–781.
[2] et al, Hadi Sadoghi Yazdi, ‘ Robust classification via clipping-based kernel recursive least lncosh of error,’ Expert Systems With Applications 2022.

1 − 𝑒−𝛼𝑙𝑛𝑐𝑜𝑠ℎ(𝑒)

e

For Example, Where is the LnCosh formed? 

 Abs(error)--->Differentiable LnCosh

 Sign Least Mean Square [1]
(simple type of Stochastic gradient descend)

 [2]

Robustness of LnCosh



15[1] Pritam Anand, ’A new asymmetric ϵ-insensitive pinball loss function based support vector quantile regression model,’ Applied Soft Computing, 2020
[2] M. Tanveer, et. Al, ‘Sparse Twin Support Vector Clustering Using Pinball Loss,’ IEEE Journal of Biomedical and Health Informatics 2021

[1]

𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 Pinball loss function

 Motivation:

 over-prediction, under-prediction

 non-normal errors 

min
𝑋𝑖,𝜔𝑖,𝑏𝑖

𝑋𝑖𝜔𝑖 + 𝑏𝑖𝑒
2 + 𝑐  

𝑖=1

𝑛

 𝑙(  𝑒)

 𝑙(𝑒)
 𝑒 = 𝑒 −  𝑋𝑖𝜔𝑖 + 𝑏𝑖𝑒

Pinball Loss Function

https://ieeexplore.ieee.org/author/37086481478
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020
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 Weighting based on decision profile [1]
 Diversity needs robust loss function [2]
 Equity or Fairness leads to bias [3]
 Diversity is good [4] 
 features that closely approximate the non-sensitive features[5]

Diversity, Equity, Justice

[1] et al, Sadoghi ,’Making Diversity Enhancement Based on Multiple Classifier System by Weight Tuning,’ Neural Process Lett (2012)
[2] et al, Sadoghi, ‘Diversity-based diffusion robust RLS using adaptive forgetting factor,’ Signal Processing 2020.

[3] Onur Köksoy, et.al,’ A new right-skewed loss function in process risk assessment,’ European Journal of Industrial Engineering, 2019
[4] et al, Sadoghi ,’Creating and measuring diversity in multiple classifier systems using support vector data description,’ Applied soft computing, 2011.
[5] Steffen Grünewälder, et.al, ‘Oblivious Data for Fairness with Kernels,’ jmlr, 2021. 

Diversity Inclusion Justice

Data

Loss & 
Cost

Solution 
Method

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=05xpTOsAAAAJ&sortby=pubdate&citation_for_view=05xpTOsAAAAJ:roLk4NBRz8UC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=05xpTOsAAAAJ&sortby=pubdate&citation_for_view=05xpTOsAAAAJ:roLk4NBRz8UC
https://www.inderscience.com/filter.php?aid=100928
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=05xpTOsAAAAJ&sortby=pubdate&citation_for_view=05xpTOsAAAAJ:roLk4NBRz8UC


17[1] Jonathan T. Barronm, ‘A General and Adaptive Robust Loss Function,’ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
[2] et al, Sadoghi ,’RELF: Robust Regression Extended with Ensemble Loss Function,’ Applied Intelligence, 2019

[1]

𝑅 𝐿 𝛾, 𝜃, 𝜃∗ = 𝐸  

𝑘=1

𝑚

𝛾𝑘𝑙𝑘 𝜃, 𝜃∗ [2]

Loss function, Ensemble Learning

https://ieeexplore.ieee.org/xpl/conhome/8938205/proceeding
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=05xpTOsAAAAJ&sortby=pubdate&citation_for_view=05xpTOsAAAAJ:roLk4NBRz8UC
https://www.researchgate.net/journal/Applied-Intelligence-1573-7497
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Nature Index

Old Vehicle IndexBird Index

Index and Loss Function

J(µ) =  
𝑖
𝑒𝑖

2

𝑒𝑖 = 𝑥𝑖 − µ

𝐽(µ) = 𝑥1 − µ 2 + 𝑥2 − µ 2 + ⋯ + 𝑥𝑛 − µ 2

𝜕𝐽

𝜕µ
= 0 ⟹  

𝑖=1

𝑛

)2(−1 𝑥𝑖 − µ = 0 ⟹ µ =
1

𝑛
 

𝑖

𝑥𝑖

Square Loss

max
µ

𝐽 =  

𝑖=1

𝑛

1 − 𝑒𝑥𝑝 −𝜂 𝑥𝑖 − µ 2 Correntropy Loss

⟹ µ =
 𝑖=1

𝑛 𝑥𝑖𝑒𝑥𝑝 −𝜂 𝑥𝑖 − µ 2

 𝑖=1
𝑛 𝑒𝑥𝑝 −𝜂 𝑥𝑖 − µ 2
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+

min
µ

 

𝑖=1

𝑛

𝑚𝑎𝑥 |𝑥𝑖 − µ| − 𝜖, 0

𝜉𝑖

min
µ

 

𝑖=1

𝑛

𝜉𝑖

s.t.
𝜉𝑖 ≥ 0 𝑖 = 1, … 𝑛
𝜉𝑖 ≥ |𝑥𝑖 − µ| 𝑖 = 1, … 𝑛

min
µ

 

𝑖=1

𝑛

𝑚𝑎𝑥 𝑥𝑖 − µ 2| − 𝜖, 0

𝐼𝑛𝑑𝑒𝑥 𝑏𝑦 𝜖 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑜𝑠𝑠

𝐼𝑛𝑑𝑒𝑥 𝑏𝑦 𝜖 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑙𝑜𝑠𝑠

𝑚𝑎𝑥 𝑒 − 𝜖, 0
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𝑒𝑖= | 𝑥𝑖 − 𝑎 |2 −𝑅2 -insensitive𝜀

max(0, | 𝑥𝑖 − 𝑎 |2 − 𝑅2)𝑙(𝑒𝑖) =

arg 𝑚𝑖𝑛  𝑙(𝑒𝑖) +𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

𝑓𝑜𝑟 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑎𝑑𝑖𝑢𝑠
min 𝑅2

𝑥 → 𝜑 𝑥
Where

𝑘 𝑥, 𝑦 =< 𝜑 𝑥 , 𝜑 𝑦 >

Support Vector Data Description

Boundary



[1] H-J Xing, L-F Li, ‘Robust least squares one-class support vector machine’, Pattern Recognition Letters 2020
[2] M. Bicegoa, M A.T. Figueiredo, ‘Soft clustering using weighted one-class support vector machines’, pattern recognition 2009
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In [1] correntropy loss:  1 − 𝑒−𝛽𝜉𝑖 + 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚

In [2] weigthed loss:  𝑤𝑖𝜉𝑖 + 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚

Also another loss function can be applied

Support Vector Data Description

Single Sphere



[1] Zhen Wang, et. al, ‘Twin Support Vector Machine for Clustering,’ IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, OCTOBER 2015
22

Center-Plane

In reference [1]: 

ith cluster by

X = (x1, x2, . . . , xm) ⊤

 Assuming these m samples belong to k classes

 Starts from a random initial assignment of the samples

Then, each sample is relabeled by

Square Loss

 Combined with 𝜖 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑜𝑠𝑠

min
𝑋𝑖,𝜔𝑖,𝑏𝑖

𝑋𝑖𝜔𝑖 + 𝑏𝑖𝑒
2 + 𝑐  

𝑖=1

𝑛

𝑚𝑎𝑥 𝑒 −  𝑋𝑖𝜔𝑖 + 𝑏𝑖𝑒 − 𝜖, 0

rest labels into the matrix    𝑋𝑖

Regularization term

min
𝑋𝑖,𝜔𝑖,𝑏𝑖

𝑋𝑖𝜔𝑖 + 𝑏𝑖𝑒
2 + 𝑐  

𝑖=1

𝑛

 𝑙(  𝑒)
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Loss-based clustering
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𝑥 ∈ 𝐷𝑎𝑡𝑎𝑆𝑒𝑡, 𝑣 𝑖𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

 Proposed View

Clustering



[1] et al, Hadi Sadoghi Yazdi, ‘Robust Heterogeneous C-means’, Applied Soft Computing, 2019
25

 Standard FCM

 Another view of error

Robust

Clustering
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 Finding three images which described 
‘cold’ concept

Example

 Finding three images which described 

‘food’ concept

 Finding three images which described 
‘Sport’ concept

 Finding three images which described 
‘War’ concept

Data Reduction, Concepts index
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𝐸 𝑙 𝑒 + 𝛾𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚:

Sparsification of 
Membership matrix

Projection

Reduce 
reconstruction loss 

𝛾  

𝑖=1

𝑛

 

𝑗=1

𝑐

𝑓𝑖 − 𝑓𝑗
2
𝑤𝑖𝑗

2
From Laplacian 
Matrix

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑇𝑒𝑟𝑚

take a look at regularization term
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Kernel Density Estimation

Mean Shift Clustering

[1] et al, Hadi Sadoghi Yazdi, ‘ Crowd analysis using bayesian risk kernel density estimation,’ Engineering Applications of Artificial Intelligence.
[2] et al, Hadi Sadoghi Yazdi, ‘Automated Detection of Region of Interest using Non-Parametric Distribution Based on Bayesian Risk,’ Journal of Machine Vision and 
Image Processing.

Mean Shift Clustering

https://scholar.google.com/citations?view_op=view_citation&hl=de&user=Zx-aNNgAAAAJ&citation_for_view=Zx-aNNgAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=de&user=Zx-aNNgAAAAJ&citation_for_view=Zx-aNNgAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=de&user=Zx-aNNgAAAAJ&citation_for_view=Zx-aNNgAAAAJ:u5HHmVD_uO8C
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1) Intelligent Camera

2) Detection

3) Interest Locations by Mean Shift

Example for Mean Shift Clustering



30Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 
Applications, 173, p.114657.

Spectral Clustering

 Main Steps of Spectral Clustering



31Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 
Applications, 173, p.114657.

Spectral Clustering

 New Loss in Spectral Clustering

 Final Cost Function:



32
Pohl, D., Bouchachia, A. and Hellwagner, H., 2016. Online indexing and clustering of social media data for emergency management. Neurocomputing, 172, pp.168-179.

Online Clustering

 Online Index

𝐽 = 𝐸 𝑙 ⅇ
𝑙 ⅇ =𝑒2

 𝐽 =  

𝑖=1

𝑛

𝑒𝑖
2 =  

𝑖

𝑥𝑖 − 𝜇 2

𝜇𝑛𝑒𝑤 = 𝜇𝑜𝑙𝑑 − 𝜆
𝜕𝐽

𝜕𝜇
𝑆𝐺𝐷

𝜇𝑘 = 𝜇𝑘−1 + 2𝜆  

i

𝑥𝑖 − 𝜇𝑘−1
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Online Clustering

 Assume new loss function: 

 Pseudo-Huber loss

 without the coefficients 

𝐿𝛿 ⅇ = 𝛿2 1 +
ⅇ2

𝛿2 − 1

𝜕𝐽

𝜕𝜇
=  

𝑖=1

𝑛

1

2

−𝜇𝑒𝑖

𝛿2 1 +
𝑒𝑖

2

𝛿2

−
1
4

⇒ 𝛻𝐽 =  

𝑖=1

𝑛

−(𝑥𝑖 − 𝜇) 1 +
𝑥𝑖 − 𝜇 2

δ2

−
1
2

𝜕𝐽

𝜕𝜇
=

𝜕𝐿

𝜕𝜇
= − 𝑥𝑖 − μ 1 +

𝑥𝑖 − 𝜇 2

𝛿2

−
1
2

, for LMS

Start in 200 as outlier

Convergence to the median value in 
4

The output was obtained with 5 
iterations on this data

Even with one iteration for large 
amounts of delta, the answer is 

obtained



min 
1

2
⃦𝜇 − 𝜇𝑗𝑡 ⃦2+𝑐𝜉𝑖 s.t ⃦𝑥𝑖 − 𝜇 ⃦2≤ 𝜉𝑖 [1]

𝜇 = 𝜇𝑗𝑡 + (1 − 𝑆)(𝑥𝑖 − 𝜇𝑗𝑡) Self Organize Map (SOM)

[1] K. crammer, ‘Online Passive-Aggressive Algorithms,’ Journal of Machine Learning Research 7 (2006)

Online Clustering Passive Aggressive 
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Application Examples 



36Bahraini, T., Azimpour, P. and Yazdi, H.S., 2021. Modified-mean-shift-based noisy label detection for hyperspectral image classification. Computers & Geosciences, 155, 

p.104843.

Mean Shift Clustering



37Bahraini, T., Azimpour, P. and Yazdi, H.S., 2021. Modified-mean-shift-based noisy label detection for hyperspectral image classification. Computers & Geosciences, 155, 

p.104843.

Some Loss functions



Bahraini, T., Azimpour, P. and Yazdi, H.S., 2021. Modified-mean-shift-based noisy label detection for hyperspectral image classification. Computers & Geosciences, 155, 

p.104843.
38

Hyperspectral Image By Mean Shift Clustering



 W-Step:

 p-Step:

39Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 

Applications, 173, p.114657.

Multi-view data fusion



40Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 

Applications, 173, p.114657.

Multi-view data fusion



41Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 

Applications, 173, p.114657.

Multi-view data fusion



42Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 

Applications, 173, p.114657.

Multi-view data fusion



43Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 

Applications, 173, p.114657.

Multi-view data fusion



44Zamiri, M., Bahraini, T. and Yazdi, H.S., 2021. MVDF-RSC: Multi-view data fusion via robust spectral clustering for geo-tagged image tagging. Expert Systems with 

Applications, 173, p.114657.

Multi-view data fusion



45
Khalkhali, M.B., Vahedian, A. and Yazdi, H.S., 2020. Vehicle tracking with Kalman filter using online situation assessment. Robotics and Autonomous Systems, 131, p.103596.

• Vehicle tracking with Kalman filter using online situation assessment

• Vehicle tracking in the field of public transportation using Kalman filter (KF)

• Utilizing online situation assessment (SA) inside Kalman filter is studied

• Motion History Graph is used as online modeling of the history of the vehicle 
motions and is used to augment the estimation.

Tracking
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Khalkhali, M.B., Vahedian, A. and Yazdi, H.S., 2020. Vehicle tracking with Kalman filter using online situation assessment. Robotics and Autonomous Systems, 131, p.103596.

Tracking
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Khalkhali, M.B., Vahedian, A. and Yazdi, H.S., 2020. Vehicle tracking with Kalman filter using online situation assessment. Robotics and Autonomous Systems, 131, p.103596.

Tracking



Conclusion

• Clustering & loss function

• Human &  Society based loss function

48



Thanks for Your Attention
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